Particle on a ring



Particle on a Ring: Eigenfunction
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Fig. 3.2 The vector representation
of angular momentum of a particle
(or an effective particle) confined to
a plane. Note the right-hand serew
convenuon tor the onentaton ol
the vector
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Particle on a Ring: Boundary Condition
Wave functions must be single-valued: ©,©)=o,, ¢ +2x)
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Fig. 3.3 The wavefunction must
satisty ¢yclic boundary conditions;
only the dark curve of these three is
acceprable. The horizontal
coordinate corresponds to an

entire circumberence of the ring,
and the end points should be
considered to be joined.
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and can be verified to satisfy the normalization condition containing the
complex conjugate
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nality of the functions (13) also follows easily, for
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Particle on a sphere:
Spherical harmonics



Fig. 3.7 Spherical polar coordinates.
The angle 0 is called the colatitude
and the angle ¢ is the azimuth.



Solutions to the Rigid Rotor
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Try Y(Q_,gb) = @(9)@(@) as a solution
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Since 6 and ¢ are independent variables, each side of the equation must be
equal to a constant = m°.
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Now let's look at @(9).
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After some rearrangement we obtain the Legendre equation ......
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B=1(1+1) where [=0,1,2,.

and m=0, £1, £2,....,%/
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Spherical harmonics
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Y"™'s are the eigenfunctions to [y = Ey for the rigid rotor problem.
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Anqgular parts of Hydrogen atom orbitals

z Z Z
| [ 1 A
B =mn/2 0
X Y X p=m/2
Xxy-plane yz-plane xzZ-plane

Xy —plane corresponds to @ = /2 and any value of ¢
yz-plane corresponds to ¢ = /2 and any value of 6
xz-plane corresponds to ¢ = 0 and any value of 8

The specified plane is shown tinted in each case



Angular part of the 2p, orbital is:

sinf! X cos ¢

for all values of 6, the function is zero when ¢ = /2

this range of angles corresponds to the
yz-plane, which therefore is the angular node

Z Angular part of the 2p, orbital is:

AN sin ! X sing
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zero, for all values of 6, when ¢ =0

this specifies the xz plane which is therefore
a nodal plane for this orbital



Anqgular dependence of the D, spherical
harmonic

sinf! X cos ¢

In the xy plane for 6 = /2

The right lobe corresponds to positive values and the left
lobe corresponds to negative values

The length of each line terminating in a point is the value of
cos¢ for the corresponding value of ¢



Angular Momentum Operators
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Space Quantization

The five (that is, 2/+1) allowed
orientations of the angular
momentum with [=2.

The length of the vector is {I(I1+1)}2,
which in this case is 612,

m, is restricted to certain values;
hence the z-component of the
angular momentum is also
restricted to 2I+1 discrete values for
a given value of |

This restriction of the component of
angular momentum is called space
quantization

The vector can adopt only 21+1
orientations in contrast to the
classical description in which the
orientation of the rotating body is
continuously variable



The figure represents the fact that if
the z-component of angular
momentum is specified, the x- and
y-components cannot in general be
specified, the angular momentum
vector is supposed to lie at an
Indeterminate position on one of
the cones shown here (for [=2)



Rigid Rotor

One confusing point about angular momentum is that for different
kinds of angular momentum, we use different letters.

So while I'is the letter chosen for an electron moving around the nucleus,
J is the chosen letter for the rotation of a diatomic molecule
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Define the rotational constant B

h ~  h
B= Hz or B= cm™
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This gives rise to a rigid rotor absorption spectrum with evenly spaced lines.

Spacing between transitions is 2B (Hz) or 2B (cm™)

= ~V, ., =2B|(J+1)+1]|-2B(J+1)=2B

\/J—l—>,f~2 JoJ+l

Use this to get microscopic structure of diatomic molecules directly from
the absorption spectrum!

Get B directly from the separation between lines in the spectrum.
Use its value to determine the bond length ro !
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Central Force Problem

_myry A+ mofy,  myty A+ molhy
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1MR2: This term is the kinetic energy due to translational mot

of the whole system of mass M, with the hypothetical
particle being located at the center of mass

‘.UJ" . This term is the kinetic energy of internal (relative) moti
2 " of the two particles

The relative positionr =r,-r,is the
position of body 1 relative to body 2
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