Particle on a ring

Particle on a Ring: Eigenfunction

$$
\begin{aligned}
& \Phi_{+}(\phi)=A_{+\phi} e^{i m_{i} \phi} \\
& \Phi_{-}(\phi)=A_{-\phi} e^{-i m_{i} \phi} \\
& m_{i}=\left(\frac{2 L E}{\hbar^{2}}\right)^{1 / 2} \quad E_{m}=\frac{m^{2} \hbar^{2}}{2 I}
\end{aligned}
$$

Normalization

$$
\begin{aligned}
& \int_{0}^{2 \pi} \Phi^{*} \Phi \mathrm{~d} \phi=|A|^{2} \int_{0}^{2 \pi} \mathrm{e}^{-\mathrm{i} m m_{i} \phi} \mathrm{e}^{\mathrm{i} m m_{i} \phi} \mathrm{~d} \phi=|A|^{2} \int_{0}^{2 \pi} \mathrm{~d} \phi=2 \pi|A|^{2} \\
& A_{+\phi}=A_{-\phi}=\frac{1}{\sqrt{2 \pi}}
\end{aligned}
$$

Fig. 3.2 The vector representation of angular momentum of a particle (or an effective particle) confined to a plane. Note the right-hand screw convention for the orientation of the vector.
$\underline{\text { Final Solutions: Eigenstates of a Free Particle on a Ring }} \Phi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}, E_{m}=\frac{m^{2} \hbar^{2}}{2 I}$

Particle on a Ring: Boundary Condition

Wave functions must be single-valued: $\Phi_{m}(\phi)=\Phi_{m}(\phi+2 \pi)$

Fig. 3.3 The wavefunction must satisfy cyclic boundary conditions; only the dark curve of these three is acceptable. The horizontal coordinate corresponds to an entire circumference of the ring, and the end points should be considered to be joined.

$m_{i} \neq \pm$ integer

$$
\begin{gathered}
\Phi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi} \\
a_{m} e^{i m \phi}=a_{m} e^{i m(\phi+2 \pi)}=a_{m} e^{i m \phi} e^{i 2 \pi m} \\
e^{i 2 \pi m}=1 \\
m_{l}=0, \pm 1, \pm 2, \pm 3, \ldots
\end{gathered}
$$

must be integer!

Final Solutions

$$
\Phi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}, E_{m}=\frac{m^{2} \hbar^{2}}{2 I}
$$

$$
(m=0, \pm 1, \pm 2, \cdots)
$$

$$
\psi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}
$$

and can be verified to satisfy the normalization condition containing the complex conjugate

$$
\int_{0}^{2 \pi} \psi_{m}^{*}(\phi) \psi_{m}(\phi) d \phi=1
$$

where we have noted that $\psi_{m}^{*}(\phi)=(2 \pi)^{-1 / 2} e^{-i m \phi}$. The mutual orthogonality of the functions (13) also follows easily, for

$$
\begin{aligned}
& \int_{0}^{2 \pi} \psi_{m^{\prime}}^{*} \psi_{m}(\phi) d \phi=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i\left(m-m^{\prime}\right) \phi} d \phi \\
&=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[\cos \left(m-m^{\prime}\right) \phi+i \sin \left(m-m^{\prime}\right) \phi\right] d \phi=0 \\
& \text { for } m^{\prime} \neq m
\end{aligned}
$$

Particle on a sphere: Spherical harmonics

Fig. 3.7 Spherical polar coordinates. The angle θ is called the colatitude and the angle ϕ is the azimuth.

Solutions to the Rigid Rotor

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 I}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] Y(\theta, \phi)=E Y(\theta, \phi) \\
& \hat{H} Y(\theta, \phi)=E Y(\theta, \phi)
\end{aligned}
$$

After Rearranging:

$$
[\underbrace{\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{2 I E}{\hbar^{2}} \sin ^{2} \theta}_{\text {only } \theta}] Y(\theta, \phi)=-\underbrace{-\underbrace{\frac{\partial^{2}}{\partial \phi^{2}}} Y(\theta, \phi), ~}_{\text {only } \phi}
$$

Try $\quad Y(\theta, \phi)=\Theta(\theta) \Phi(\phi) \quad$ as a solution
Define $\quad \beta \equiv \frac{2 I E}{\hbar^{2}}$
$\left[\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\beta \sin ^{2} \theta\right] \Theta(\theta) \Phi(\phi)=-\frac{\partial^{2}}{\partial \phi^{2}} \Theta(\theta) \Phi(\phi)$
Dividing by $\Theta(\theta) \Phi(\phi)$ and simplifying

$$
\underbrace{\frac{\sin \theta}{\Theta(\theta)} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right) \Theta(\theta)+\beta \sin ^{2} \theta}_{\text {only } \theta}=-\underbrace{-\frac{1}{\Phi(\phi)} \frac{\partial^{2}}{\partial \phi^{2}} \Phi(\phi)}_{\text {only } \phi}
$$

Since θ and ϕ are independent variables, each side of the equation must be equal to a constant $\equiv m^{2}$.

$$
\begin{equation*}
\Rightarrow \quad \frac{1}{\Phi(\phi)} \frac{\partial^{2}}{\partial \phi^{2}} \Phi(\phi)=-m^{2} \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \Rightarrow \frac{\sin \theta}{\Theta(\theta)} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right) \Theta(\theta)+\beta \sin ^{2} \theta=m^{2} \tag{II}
\end{equation*}
$$

$$
\begin{gathered}
\frac{\partial^{2} \Phi(\phi)}{\partial \phi^{2}}=-m^{2} \Phi(\phi) \\
\Phi(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi} \quad m=0, \pm 1, \pm 2, \pm 3, \ldots
\end{gathered}
$$

Particle on a ring

$$
\frac{\sin \theta}{\Theta(\theta)} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right) \Theta(\theta)+\beta \sin ^{2} \theta=m^{2}
$$

Change variables: $x=\cos \theta$ $\Theta(\theta)=P(x) \quad \frac{d x}{-\sin \theta}=d \theta$

Since $0 \leq \theta \leq \pi \quad \Rightarrow \quad-1 \leq x \leq+1$
Also $\sin ^{2} \theta=1-\cos ^{2} \theta=1-x^{2}$

After some rearrangement we obtain the Legendre equation

$$
\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}} P(x)-2 x \frac{d}{d x} P(x)+\left[\beta-\frac{m^{2}}{1-x^{2}}\right] P(x)=0
$$

$$
\begin{aligned}
& \begin{array}{l}
\beta=l(l+1) \quad \text { where } \quad l=0,1,2, \ldots \\
\\
\text { and } \\
\beta=0, \pm 1, \pm 2, \ldots, \pm l \\
\hbar^{2}
\end{array} \Rightarrow E=\frac{2 I}{2 I} \beta \quad \text { (Energy is quantized) } \\
& E=\frac{\hbar^{2}}{2 I} l(l+1) \quad l=0,1,2, \ldots
\end{aligned}
$$

Spherical harmonics

$$
\begin{gathered}
Y_{l}^{m}(\theta, \phi)=\Theta_{l}^{|m|}(\theta) \Phi_{m}(\phi) \\
Y_{l}^{m}(\theta, \phi)=\left[\left(\frac{2 l+1}{4 \pi}\right) \frac{(l-|m|)!}{(l+|m|)!}\right]^{\frac{1}{2}} P_{l}^{|m|}(\cos \theta) e^{i m \phi} \\
l=0,1,2, \ldots \quad m=0, \pm 1, \pm 2, \pm 3, \ldots \pm l \\
P_{l}^{|m|}(x)=P_{l}^{|m|}(\cos \theta) \\
P_{0}^{0}(\cos \theta)=1 \\
\begin{array}{ll}
P_{1}^{0}(\cos \theta)=\cos \theta & P_{2}^{0}(\cos \theta)=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right) \\
P_{1}^{1}(\cos \theta)=\sin \theta & P_{2}^{1}(\cos \theta)=3 \cos \theta \sin \theta
\end{array} \\
P_{2}^{2}(\cos \theta)=3 \sin ^{2} \theta
\end{gathered}
$$

Y_{l}^{m} 's are the eigenfunctions to $\hat{H} \psi=E \psi$ for the rigid rotor problem.

$$
\begin{array}{ll}
Y_{0}^{0}=\frac{1}{(4 \pi)^{1 / 2}} & Y_{2}^{0}=\left(\frac{5}{16 \pi}\right)^{\frac{1}{2}}\left(3 \cos ^{2} \theta-1\right) \\
Y_{1}^{0}=\left(\frac{3}{4 \pi}\right)^{\frac{1}{2}} \cos \theta & Y_{2}^{ \pm 1}=\left(\frac{15}{8 \pi}\right)^{\frac{1}{2}} \sin \theta \cos \theta e^{ \pm i \phi} \\
Y_{1}^{1}=\left(\frac{3}{8 \pi}\right)^{\frac{1}{2}} \sin \theta e^{i \phi} & Y_{2}^{ \pm 2}=\left(\frac{15}{32 \pi}\right)^{\frac{1}{2}} \sin ^{2} \theta e^{ \pm 2 i \phi} \\
Y_{1}^{-1}=\left(\frac{3}{8 \pi}\right)^{\frac{1}{2}} \sin \theta e^{-i \phi}
\end{array}
$$

Angular parts of Hydrogen atom orbitals

$x y$-plane

$y z$-plane

$x z$-plane
xy -plane corresponds to $\boldsymbol{\theta}=\boldsymbol{\pi} / 2$ and any value of φ
yz-plane corresponds to $\varphi=\pi / 2$ and any value of θ
xz-plane corresponds to $\varphi=0$ and any value of $\boldsymbol{\theta}$
The specified plane is shown tinted in each case

Angular part of the $\mathbf{2} p_{\mathrm{x}}$ orbital is:

$$
\sin \theta \times \cos \phi
$$

for all values of θ, the function is zero when $\varphi=\pi / 2$
this range of angles corresponds to the yz-plane, which therefore is the angular node

Angular part of the $\mathbf{2} p_{\mathrm{y}}$ orbital is:

$$
\sin \theta \times \sin \phi
$$

zero, for all values of θ, when $\varphi=0$
this specifies the $x z$ plane which is therefore a nodal plane for this orbital
$2 p_{y}$

Angular dependence of the $\underline{p}_{\underline{x}}$ spherical harmonic

$$
\sin \theta \times \cos \phi
$$

in the $x y$ plane for $\theta=\pi / 2$

The right lobe corresponds to positive values and the left lobe corresponds to negative values

The length of each line terminating in a point is the value of $\cos \phi$ for the corresponding value of ϕ

Angular Momentum Operators

$$
\begin{gathered}
\hat{L}_{x}=-i \hbar\left(-\sin \phi \frac{\partial}{\partial \theta}-\cot \theta \cos \phi \frac{\partial}{\partial \phi}\right) \\
\hat{L}_{y}=-i \hbar\left(\cos \phi \frac{\partial}{\partial \theta}-\cot \theta \sin \phi \frac{\partial}{\partial \phi}\right) \\
\hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi} \\
\hat{L}^{2}=\hat{L}_{x}^{2}+\hat{L}_{Y}^{2}+\hat{L}_{z}^{2} \Rightarrow \hat{L}^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] \\
E_{l}=\frac{\hbar^{2}}{2 I} l(l+1) \quad l=0,1,2, \ldots
\end{gathered}
$$

Space Quantization

The five (that is, 2/+1) allowed orientations of the angular momentum with l=2.
The length of the vector is $\{I(I+1)\}^{1 / 2}$, which in this case is $6^{1 / 2}$.
m_{1} is restricted to certain values; hence the z-component of the angular momentum is also restricted to 2|+1 discrete values for a given value of I
This restriction of the component of angular momentum is called space quantization
The vector can adopt only $21+1$ orientations in contrast to the classical description in which the orientation of the rotating body is continuously variable

The figure represents the fact that if the z-component of angular momentum is specified, the x - and y-components cannot in general be specified, the angular momentum vector is supposed to lie at an indeterminate position on one of the cones shown here (for $\mathrm{I}=2$)

Rigid Rotor

One confusing point about angular momentum is that for different kinds of angular momentum, we use different letters.

So while I is the letter chosen for an electron moving around the nucleus, J is the chosen letter for the rotation of a diatomic molecule

$$
E_{J}=\frac{\hbar^{2}}{2 I} J(J+1) \quad J=0,1,2, \ldots
$$

$$
E_{\substack{\text { photon } \\ J \rightarrow J+1}}=h v_{\substack{\text { photon } \\ J \rightarrow J+1}}=\Delta E_{\text {rot }}=E_{J+1}-E_{J}=\frac{\hbar^{2}}{I}(J+1) \quad v_{\substack{\text { photon } \\ J \rightarrow J+1}}=\frac{h}{4 \pi^{2} I}(J+1)
$$

Define the rotational constant B

$$
\begin{aligned}
& B \equiv \frac{h}{8 \pi^{2} I} \quad(\mathrm{~Hz}) \quad \text { or } \quad \bar{B} \equiv \frac{h}{8 \pi^{2} c I}\left(\mathrm{~cm}^{-1}\right) \\
& \therefore \quad v_{J \rightarrow J+1}(\mathrm{~Hz})=2 B(J+1) \quad \bar{v}_{J \rightarrow J+1}\left(\mathrm{~cm}^{-1}\right)=2 \bar{B}(J+1)
\end{aligned}
$$

This gives rise to a rigid rotor absorption spectrum with evenly spaced lines.

Spacing between transitions is

$$
2 B(\mathrm{~Hz}) \text { or } 2 \bar{B}\left(\mathrm{~cm}^{-1}\right)
$$

$$
\bar{v}_{J+1 \rightarrow J+2}-\bar{v}_{J \rightarrow J+1}=2 \bar{B}[(J+1)+1]-2 \bar{B}(J+1)=2 \bar{B}
$$

Use this to get microscopic structure of diatomic molecules directly from the absorption spectrum!

Get \bar{B} directly from the separation between lines in the spectrum.
Use its value to determine the bond length r_{0} !

$$
2 \bar{B}=\frac{h}{4 \pi^{2} c I} \quad I=\mu r_{0}^{2} \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

$\therefore \quad r_{0}=\left[\frac{h}{8 \pi^{2} c \bar{B} \mu}\right]^{\frac{1}{2}}\left(\bar{B}\right.$ in $\left.\mathrm{cm}^{-1}\right) \quad$ or $\quad r_{0}=\left[\frac{h}{8 \pi^{2} B \mu}\right]^{\frac{1}{2}}(B$ in Hz $)$

Central Force Problem

$$
\begin{aligned}
& \quad \mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{M} \\
& T=\frac{1}{2}\left(m_{1} \dot{\mathbf{r}}_{1}^{2}+m_{2} \dot{\mathbf{r}}_{2}^{2}\right) \\
& \\
& =
\end{aligned}
$$

$$
\mu=\frac{m_{1} m_{2}}{M}=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \quad \text { [reduced mass] }
$$

$$
T=\frac{1}{2} M \dot{\mathbf{R}}^{2}+\frac{1}{2} \mu \dot{\mathbf{r}}^{2}
$$

$\frac{1}{2} M \dot{\mathbf{R}}^{2}$: This term is the kinetic energy due to translational motion of the whole system of mass M, with the hypothetical particle being located at the center of mass
$\frac{1}{2} \mu \dot{\mathbf{r}}^{2}$: This term is the kinetic energy of internal (relative) motion of the two particles

The relative position $r=r_{1}-r_{2}$ is the position of body 1 relative to body 2

